On the k-Lucas Numbers

نویسنده

  • Sergio Falcon
چکیده

From a special sequence of squares of k-Fibonacci numbers, the kLucas sequences are obtained in a natural form. Then, we will study the properties of the k-Lucas numbers and will prove these properties will be related with the k-Fibonaci numbers. In this paper we examine some of the interesting properties of the k-Lucas numbers themselves as well as looking at its close relationship with the k-Fibonacci numbers. The k-Lucas numbers have lots of properties, similar to those of k-Fibonacci numbers and often occur in various formulae simultaneously with latter. Mathematics Subject Classification: 11B39, 11B83

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Properties of Balancing and Lucas-Balancing $p$-Numbers

The main goal of this paper is to develop a new generalization of balancing and Lucas-balancing sequences namely balancing and Lucas-balancing $p$-numbers and derive several identities related to them. Some combinatorial forms of these numbers are also presented.

متن کامل

ON THE GENERALIZED ORDER-k FIBONACCI AND LUCAS NUMBERS

In this paper we consider the generalized order-k Fibonacci and Lucas numbers. We give the generalized Binet formula, combinatorial representation and some relations involving the generalized order-k Fibonacci and Lucas numbers.

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums

As in [1, 2], for rapid numerical calculations of identities pertaining to Lucas or both Fibonacci and Lucas numbers we present each identity as a binomial sum. 1. Preliminaries The two most well-known linear homogeneous recurrence relations of order two with constant coefficients are those that define Fibonacci and Lucas numbers (or Fibonacci and Lucas sequences). They are defined recursively ...

متن کامل

Some Bounds for the Norms of Circulant Matrices with the k-Jacobsthal and k-Jacobsthal Lucas Numbers

Abstract In this paper we investigate upper and lower bounds of the norms of the circulant matrices whose elements are k−Jacobsthal numbers and k−Jacobsthal Lucas numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011